Central command increases sympathetic nerve activity during spontaneous locomotion in cats.

نویسندگان

  • G Hajduczok
  • J S Hade
  • A L Mark
  • J L Williams
  • R B Felder
چکیده

A controversial issue in exercise physiology is the relative contribution of central command versus afferent input from contracting muscles and baroreceptors in the regulation of sympathetic nerve activity (SNA) during exercise. Recent studies of exercising humans have suggested that central command increases cutaneous sympathetic sudomotor nerve activity but have challenged the concept that central command contributes importantly to increases in sympathetic vasoconstrictor nerve activity to skin and skeletal muscle. The purpose of this study was to examine the influence of central command on renal SNA and lumbar SNA during spontaneous locomotion in decorticate cats. Unanesthetized decorticate cats that developed locomotion spontaneously or during electrical stimulation of the subthalamic locomotor region were studied in the presence and absence of input from skeletal muscle and baroreceptor afferents. Spontaneous rhythmic locomotion in the unparalyzed state was associated with significant increases in mean arterial pressure (MAP) from 106 +/- 10 to 133 +/- 11 mm Hg (p less than 0.05) and increases in renal SNA of 301 +/- 100% (p less than 0.05). During spontaneous fictive rhythmic locomotion in paralyzed cats, there were also significant (p less than 0.05) increases in MAP (43 +/- 6%), renal SNA (183 +/- 32%), and lumbar SNA (223 +/- 83%). Baroreceptor denervation did not attenuate increases in MAP, renal SNA, and lumbar SNA during locomotion. During electrical stimulation of the subthalamic locomotor region in paralyzed cats, MAP increased by 43 +/- 17% (p less than 0.05), and renal SNA increased by 175 +/- 47% (p less than 0.05). These findings indicate that central command is capable of increasing sympathetic neural drive in unanesthetized decorticate cats. This increase in sympathetic drive occurs even in the absence of feedback from contracting muscles or from arterial and cardiopulmonary baroreceptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented renal sympathetic nerve activity by central command during overground locomotion in decerebrate cats.

We examined whether the cerebrum is essential for producing the rapid autonomic adjustment at the onset of spontaneous overground locomotion. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), and electromyogram of the forelimb triceps brachialis were measured when freely moving, decerebrate cats spontaneously produced overground locomotion, supporting body ...

متن کامل

Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored wi...

متن کامل

Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats.

To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the mot...

متن کامل

Exaggerated sympathetic and cardiovascular responses to stimulation of the mesencephalic locomotor region in spontaneously hypertensive rats.

The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly. As such, it is a viable candidate for the generation of the augmented va...

متن کامل

Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 69 1  شماره 

صفحات  -

تاریخ انتشار 1991